Appendix A #### Observations for identifying Earth system variations and trends | Parameter | Implementation | Readiness | Operational Phase | Partnerships | Related In Situ | | |---|--|---|--|---|--|--| | How are global precipitation, evaporation, and the cycling of water changing? | | | | | | | | Atmospheric
Temperature | Passive sounding | Excellent | NPOESS | EUMETSAT coordination | Radiosondes
(NOAA, WWW,
NASA, NDSC) | | | | Active sounding (GPS) | Demonstration needed | NPOESS | EUMETSAT coordination | Global GPS network | | | Atmospheric
Water Vapor | Passive sounding | Satisfactory | NPOESS | EUMETSAT coordination | Radiosondes, Ly- , µwave
(NASA, NOAA, WWW) | | | Global
Precipitation | Core radar satellite
with 6–8 passive
µwave satellite
constellation | Demonstrated by
TRMM and passive
µwave imagers | Passive µwave | TRMM with Japan | Rain gauges, weather radar
(NOAA, WWW) | | | Soil Moisture | | Very large real or
synthetic antenna to
be demonstrated | Highly desired;
subject to opera-
tional viability | Likely with Europe-
an Space Agency | Neutron probes, lysimeters
(USDA, USGS, FAO) | | | How is the global oce | an circulation varying or | n interannual, decadal, a | and longer time scales | ? | | | | Ocean Surface
Topography | | Demonstrated. Development needed for denser coverage | Under study
by NPOESS | Continuation of
current partner-
ships likely | Tide gauges
(Global Geodedic Network) | | | Ocean Surface Winds | Active/passive µwave | Demonstrated by NSCAT and Seawinds | NPOESS | Seawinds and follow-on with Japan | Ships, buoys
(NOAA, WWW) | | | Sea Surface
Temperature | IR and µwave | Excellent | NPOESS | EUMETSAT | Ships, buoys
(NOAA, WWW) | | | Sea Ice Extent | μwave | Excellent | NPOESS | NASDA | Ships, airborne reconnais-
sance (Navy, USCG, NOAA) | | | How are global ecosy | stems changing? | | | | | | | Terrestrial Primary
Productivity | ≤1 km resolution | Excellent
MODIS | NPOESS | EUMETSAT | Inventory (USDA,
FAO, NSF, GTOS) | | | Marine Primary
Productivity | | Demonstrated
SeaWiFS, MODIS | NPOESS (Partial) | Japan and Europe
(tentative) | SIMBIOS time series studies (NASA) | | | Classification,Fun
ctional Groups | Hyperspectral, Lidar | Demonstrated by
EO-1 (Partial) | NPOESS (Partial)
LDCM (Partial) | NOAA, USGS | Habitat structure, for-
est inventory, AUV,
aircraft, moorings | | | How is atmospheric composition changing? | | | | | | | | Total Column Ozone | | Excellent | NPOESS | EUMETSAT | Dobson, Brewer, FTIR,
UV/VIS (NASA, NOAA) | | | Ozone Vertical Profile | | Excellent | NPOESS | International coordination | Ozonesondes, Lidar,
µwave , IR, (NASA, NOAA) | | ## **Appendix B** ### Observations for determining primary forcings on the Earth system | Parameter | Implementation | Readiness | Operational Phase | Partnerships | Related In Situ | | | |--|--|--|--|--|--|--|--| | What trends in atmospheric constituents and solar radiation are driving global climate? | | | | | | | | | Total Solar Irradiance | | Excellent | NPOESS | | Global surface networks
(BSRN, WRDC, SURFRAD) | | | | Solar UV Irradiance | | Excellent | NPOESS (planned) | | USGCRP UV network,
NDSC (multiagency) | | | | Stratospheric Aerosol
Distribution | | Excellent | NPOESS (pending sufficient resolution) | | Lidar, backscatter-sondes
(NASA, NOAA, NSF) | | | | Total Aerosol Amount | | Excellent | NPOESS | | AERONET, USDA network,
NOAA/BSRN, DOE/ARM | | | | Aerosol Properties | | Further development needed | | Important for ground-based measurements | AERONET, NOAA/CMDL, airborne aerosol spectrometers | | | | Surface Trace Gas
Concentration | | Simpler instruments
with higher temporal
resolution needed | AGAGE | Support ground
network | NASA AGAGE, NOAA
flask network | | | | Volcanic Gas & Ash
Emissions | | Further development to characterize troposphere constituents | Aviation requirements | | Optical calibration | | | | What changes are occurring | ng in global land cover and | l land use, and what are the | neir causes? | | | | | | Fire Occurrences | Global IR & visible or
near IR; hyper-spec-
tral for fuel load | Excellent
MODIS,TRMM;
EO-1 (Partial) | NPOESS, EDR application | | Aeronet (NASA), burn scar inventory (USFS), optical calibration | | | | Trace Gas Sources | CO ₂ column mapping is greatest priority | OCO in definition phase | Not currently an operational requirement | | Flask network (NOAA),
Ameriflux (DOE, USDA,
NASA), FluxNet | | | | Land Cover & Land Use | High spatial resolu-
tion visible | Excellent
Landsat; E0-1 | LDCM | Commercial data purchase | Land Cover Maps (USGS),
Vegetation Inventories
(DOI, USDA) | | | | What are the motions of the Earth's interior, and how do they directly impact our environment? | | | | | | | | | Interior Motions of the
Earth | | Excellent | Multi-agency
infrastructure | Exploratory
missions | SLR, GPS, VLBI networks,
magnetometer
observations | | | | What changes are occurring in the mass of the Earth's ice cover? | | | | | | | | | Ice Surface
Topography | | ICEsat lidar altimetry demonstration | | Coordination with
European radar
altimetry satellite | GPS (NASA, NSF) | | | | Parameter | Implementation | Readiness | Operational Phase | Partnerships | Related In Situ | | | | |--------------------------------|--|-----------|---------------------------------------|----------------------------------|--|--|--|--| | How is the Earth's surface | How is the Earth's surface being transformed by naturally occurring tectonic and climatic processes? | | | | | | | | | Gravity Field | | GRACE | DOD interests | | Geodetic networks | | | | | How is the Earth's surface | How is the Earth's surface being transformed by naturally occurring tectonic and climatic processes? | | | | | | | | | Terrestrial
Reference Frame | Ground observa-
tion & precision
satellite tracking | Excellent | Multi-agency
infrastructure | Multi-national
ground network | SLR and GPS networks | | | | | Surface Stress,
Deformation | Focus on ac-
tive earthquake &
volcanic regions | Excellent | Local agency support of ground arrays | Multi-national
ground arrays | Regional GPS networks,
geological obsservations | | | | # **Appendix C** #### Observations to characterize Earth system responses and feedbacks | Parameter | Implementation | Readiness | Operational Phase | Partnerships | Related In Situ | |---|--|--|-------------------------|-------------------------------------|---| | What are the effects of clo | ouds and surface hydrologic | processes on Earth's climate? | | | | | Cloud System Structure | Multi-spectral visible
& IR radiometry | Excellent | NOAA & NPOESS | EUMETSAT
& Japanese
ADEOS/GLI | Radiosondes, lidar
(NASA, NOAA, FAA) | | Cloud Particle Properties & Distribution | Active sensor to resolve 3-D structure | Demonstration of cloud radar and lidar pending | | | Altitude-resolved cloud particle data | | Radiation Budget | Broadband radiometry | Excellent | NPOESS | | Cloud and aerosol properties | | Soil Moisture | | | | | neutron probes, lysimeters
(USDA, USGS, FAO) | | Snow Cover &
Accumulation | | Awaiting demonstration | NPOESS | | Snow transects
(NOAA/NWS) | | Freeze-Thaw Transition | | Awaiting demonstration | | | | | How do ecosystems, land | cover and biogeochemical c | ycles respond to and affect gl | obal environmental chan | ge? | | | Terrestrial Biomass | Active sensor to resolve canopy structure | Awaiting demonstration | | | Crop-timber yields
(USDA, DOI), carbon
database (DOE) | | Marine Biomass
& Productivity | | Excellent
SeaWiFS, MODIS (Partial) | NPOESS
(Partial) | | Gliders, AUV's, moorings, floats (NASA, NOAA) | | Carbon Sources
and Sinks | | OCO in definition phase | | | Flask network (NOAA),
AmeriFlux/FluxNet
(DOE, USDA, NASA) | | How can climate variations | s induce changes in the glob | pal ocean circulation? | | | | | Sea Surface Salinity | Very high radio-
metric precision
passive µwave | Awaiting demonstration | NPOESS | European
Space Agency | Ships and moored/drift-
ing buoys (NOAA, NSF) | | Sea Ice Thickness | | | | | Moored buoys (ONR) | | How do atmospheric trace | constituents respond to and | d affect global environmental o | change? | | | | Atmospheric Properties in Tropopause Region | | Limb viewing sensors not yet demonstrated | | | Sondes (WWW, NOAA) | | How is global sea level aff | ected by natural variability a | and human-induced change in | the Earth system? | | | | Polar ice sheet velocity | Synthetic aperture ra-
dar interferometry and
image feature tracking | Demonstrated | | | GPS (NASA, NSF) | ## **Appendix D** #### Observations for studying the consequences of Earth system change | Parameter | Implementation | Readiness | Operational Phase | Partnerships | Related In Situ | | |---|--|--|------------------------------|---|---|--| | How are variations in local weather, precipitation and water resources related to global climate variation? | | | | | | | | Global Precipitation | Core radar satellite with 6–8 passive mwave satellite constellation | Demonstrated by
TRMM and passive
µwave imagers | Passive mwave | TRMM with Japan | Rain gauges, weather radar (NOAA, WWW) | | | Ocean Surface Winds | Active µwave | Demonstrated by
NSCAT and SeaWinds | | Seawinds
cooperation with
Japan; EUMETSAT | Ships, buoys
(NOAA, WWW) | | | | Passive µwave radiometry/polarimetry | Windsat/Coriolis
demonstration | NPOESS | | N/A | | | Meteorological Properties Around Storms | Vertical profiling from a geostation-ary platform | Demonstra-
tion by GIFTS | | | Radiosondes
(NOAA, WWW) | | | Lightning Rate | Geostationary | Demonstrated by OTD and LIS | | | Sferics (NOAA) | | | River Stage Height/
Discharge Rate | | Capabil-
ity demonstrated by
Topex/Poseidon | | | River gauges (USGS) | | | What are the consequence | es of land cover and land u | ise change for human soc | ieties and the sustainabilit | ty of ecosystems? | ' | | | Primary Productivity | Global 1 km or better resolution needed | Excellent
MODIS, Landsat | NPOESS
LDCM | EUMETSAT | NASA-SIMBIOS, GOOS,
GTOS, crop, forest
inventories (USDA,
FAO), LTER (NSF) | | | Land Cover/Land
Use Change | High spatial resolution required | Excellent
MODIS, (250m),
Landsat, E0-1 | LDCM
NPOESS (Partial) | Commercial data sets | Land cover maps (USGS),
vegetation invento-
ries (DOI, USDA) | | | Functional Groups
and Classification | Hyperspectral, Lidar | Moderate
Demonstrated by
EO-1 (Partial) | Partial by LDCM
NPOESS | NOAA, USGS | Habitat structure, forest inventory, AUV, aircraft, moorings | | | What are the consequences of climate change and increased human activities for coastal regions? | | | | | | | | Coastal Region Properties and Productivity | Multispectral
radiometry at high
spatial and temporal
resolution from GEO | Excellent | | | Coastal observa-
tions (NOAA, EPA) | | # **Appendix E** ### **Observations for predicting Earth system change** | Parameter | Implementation | Readiness | Operational Phase | Partnerships | Related In Situ | |--|---|---|---|--|--| | How can weather forecast | duration and reliability be | improved? | | | | | Tropospheric Winds | Active doppler lidar | Technical develop-
ments, demonstration
needed | | Commercial data purchase possible | Rawinsondes
(NOAA, WWW) | | Ocean Surface Winds | Active µwave | Demonstrated by
NSCAT & SeaWinds | | Seawinds coop-
eration with Japan;
EUMETSAT | Ships, buoys
(NOAA. WWW) | | | Passive µwave radiometry/ polarimetry | Windsat/Coriolis
demonstration | NPOESS | | | | Ocean Surface Salinity | Passive µwave radiometry | Aquarius in definition phase | | Joint with
Argentina | CTD, ARGO, XCTD | | Cloud Microphysics | Polarimetric data | Demonstrated | | NOAA, DOD | Aircraft sampling in field campaigns | | Global Precipitation | 6-8 satellite constellation | Demonstrated by
TRMM & passive
mwave imagers | | | Rain gauges, weather radar (NOAA, WWW) | | Freeze-Thaw Transition | | Awaiting demonstration | | | | | Lightning Rate | Geostationary | Demonstrated by OTD and LIS | | | Sferics | | Soil Moisture | | Approaching readiness | | | Neutron probes,
lysimeters
(USDA, USGS, FAO) | | Sea Surface
Temperature | IR & µwave | Excellent | NPOESS | EUMETSAT coordination | Ships, buoys
(NOAA, WWW) | | How can predictions of cli | mate variability and chang | e be improved? | | | | | Ocean Surface
Topography | Non-polar orbit to avoid tidal aliasing | Demonstrated ;
development needed
for denser coverage | NPOESS (polar orbit is problematic) | | Tide gauges;
Global Geodetic Network
for reference frame | | Ocean Bottom Pres-
sure & Topography | Enhanced satellite altimetry through better Topex tracks. | WOCE, GODAE
research projects pro-
vide initial data base | Operational
Global Ocean
Observing System | Multi-agency,
international coopera-
tion is anticipated | Ships and ARGO
floats (NOAA, NSF) | | Ice Sheets | Lidar | Demonstrated | | | Mass balance | | Sea-Ice Cover,
Extent, Concentration
and Thickness | Passive µwave, SAR
scat, VIS/IR, altimetry | Very good in µwave
and SAR, thick-
ness requires
demonstration | | NOAA, DOD | Buoys, ice break-
ers, submarines | | Ocean Heat | | Demonstrated | | NOAA | Deep sounding buoys | | Parameter | Implementation | Readiness | Operational Phase | Partnerships | Related In Situ | | | |--|---|--|---|--|--|--|--| | How will future changes in | How will future changes in atmospheric composition affect ozone, climate, and global air quality? | | | | | | | | Total Column Ozone | | Excellent | NPOESS | EUMETSAT coordination | Dobson, Brewer, FTIR,
UV/VIS (NASA, NOAA) | | | | Aerosol | | Good | | EPA | Aeronet, sunphotometers, micro pulser lidar network | | | | How will carbon cycle dyna | amics and terrestrial and r | narine ecosystems change | e in the future? | | | | | | Trends in carbon sources and sinks | CO ₂ and CH ₄ column mapping | OCO for CO ₂ in definition phase: CH ₄ needs further development | Not currently
and operational
requirement | | Flask network (NOAA),
Ameriflux/FluxNet
(DOE, USDA, NASA) | | | | Surface Properties &
Primary Productivity | High spatial resolution | Excellent, Lidar,
InSAR, and optical
need development
and need to reduce
cost.
MODIS, Landsat | Partially by NPOESS | Commercial data
purchase possible;
ESA, JAXA, CSA;
EUMETSAT
coordination | Land cover maps (USGS),
Vegetation invento-
ries (DOI, USDA) | | | | Trends in biomass | Lidar, radar | Awaiting demonstration | | | Crop, forest inventory
(USDA, FAO, NSF, GTOS);
Ameriflux/Flux
Net (DOE, USDA,
NASA); SIMBIOS | | | | Functional Groups
and Classification | Hyper-spectral, Lidar | Demonstrated
by EO-1 | Partially provided
by NPOESS, LDCM | NOAA, USGS | Habitat structure,
forest inventory, AUV,
aircraft, moorings | | | | How can our knowledge of | earth surface change be | used to predict and mitiga | te natural hazards? | | | | | | Surface Deformation | InSAR with 1 mm/yr surface displacement | Good/awaiting demonstration | | NSF | GPS, seismology, borehole strain (NASA/NSF/USGS) | | | | High-Resolution
Topography | SRTM data, imaging
lidar; data sets,
German X-SAR and
optical data e.g.,
ASTER, and ERS-1/2
tandem mission | Technology develop-
ment for space-based
lidar, formation flying
InSAR at L Band | | USGS, NIMA | | | | | Earth's Magnetic Field | | Good | | Excellent-NIMA,
Europeans ESA, DLR,
DSRI, CONAE, ASI, ISA | Intermagnet ground network | | | | Earth's Gravity Field | GRACE and
CHAMP analysis | Good | ESA GOCE | ESA, DLR, NIMA | Ocean bottom and atmospheric pressure essential | | |